

1 Особенности и преимущества

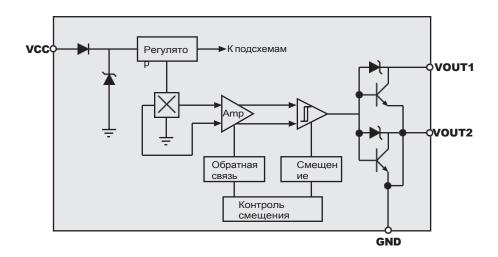
- Цифровой выход
- ▲ Стабильность во всем диапазоне температур
- ▲ Широкий диапазон рабочего напряжения:
- 4,5 B ~ 24 B
- ▲ Сильная устойчивость к механическим нагрузкам
- ▲ Бесконтактный выход, безопасность и надежность
- Прямой привод катушек двигателя постоянного тока (вентилятор)
- ▲ Устойчивость к состоянию гонки логики
- Малое время переключения и хорошая чувствительность переключения
- **▲** Корпус △ ТО-94
- ≜ Разработано в соответствии с требованиями ЕС RoHS и REACH

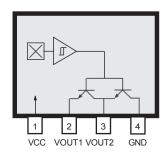
2 Примеры применения

- ▲ Автомобильная электроника, бытовая электроника и промышленная электроника
- ▲ Датчик расхода воды
- Электронная блокировка рулевой колонки
- Система дверных защелок
- Регулировка сиденья
- Измерение скорости и тахометр
- Управление двигателем
- ▲ Бесщеточный двигатель постоянного тока

3 Руководство по выбору

	Номер детали	Упаковка	Монтаж	Эксплуатация, Чтобы	В _{RР} (мин.)	В _{оР} (макс.)
,	AH4059	Антистатический пакет, 1000 штук/пакет	4-контактный SIP со сквозным отверстием	-40°C ~ 85°C	3,0 мТ	13.0 мТ


ПРИМЕЧАНИЕ: ИС Холла при сборке паяются оловянным припоем, а пайка волной поверхностно монтируемых компонентов SOT-23-3L и SOT-89 создает риск выхода из строя.


4 Общее описание

Датчик Холла АН4059 представляет собой разновидность биполярного переключателя Холла с двумя комплементарными выходами. Он особенно подходит для двигателей постоянного тока с двойной катушкой, вентиляторов постоянного тока с двойной катушкой, измерения скорости и управления вращением. В микросхеме датчика объединены источник опорного напряжения полосового диапазона, генератор напряжения Холла, усилитель сигнала, контроллер гистерезиса, диод защиты от обратного напряжения и такие блоки схемы, как драйвер выхода открытого коллектора с двумя комплементарными выходами с током стока 300 мА. Высокопроизводительный источник опорного напряжения с полосой пропускания обеспечивает постоянную чувствительность датчика в широком диапазоне температур. Диоды защиты от обратного напряжения позволяют избежать обратных сбоев питания.

5 Список терминалов

TO-94

Имя	Описание	Номер
VCC	Вход источника питания	1
GND	Выход 1	2
VOUT1	Выход 2	3
VOUT2	Наземный	4

6 Абсолютный максимум номинальных значений

Характеристика	Символ	При меча ние	Рейтинг	Еди ниц а
Напряжение питания	VCC		28	V
Обратное напряжение питания	VROUT		-0.5	V
Выходной ток	IOUTSINK		500	мА
Плотность магнитного потока	В		Неогранич енный	mT
Рабочая температура	HA	E	-40 ~ 85	°C
Максимальная температура спая	ТЈ (макс.)	Слишком высокая Тј может привести к электрическому или тепловому пробою	165	°C
Температура хранения	Tstg		-50 ~ 160	°C
Чувствительность к электростатическому разряду - НВМ	-		6	кВ

ПРИМЕЧАНИЕ 1. Модель человеческого тела в соответствии со стандартом AEC-Q100-002.

7 Электрические рабочие характеристики

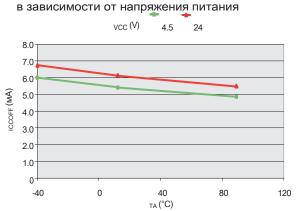
действительны во всем диапазоне рабочих температур; если не указано иное

Характеристика	Символ	Условия испытаний	Мин.	Тип.	Макс	Еди ниц а
Напряжение питания	VCC	Эксплуатация, ТЈ<165℃	4.5	-	24	V
Выходное напряжение высокого уровня	VOH	VCC=24V,RL=10k Ω , B < BRP	23.5	-	24	V
Выходное напряжение низкого уровня	VOL	IOUTMAX=25mA, B >BOP	0	-	0.5	V
Ток питания	ICC	VCC=24 B	-	6.0	8.0	мА
Выходной ток утечки	IOUTOFF	VOUT=24V, B <brp< td=""><td>-</td><td>-</td><td>10</td><td>μA</td></brp<>	-	-	10	μA
Время включения	tPO		-	-	30	μs
Время нарастания выходного сигнала	tR	VCC=12 B, $RL=1.2k\Omega$, C=12pF	-	-	2	μs
Время падения выходного сигнала	tF	VCC=12 B, $RL=1.2k\Omega$, C=12pF	-	-	2	μs

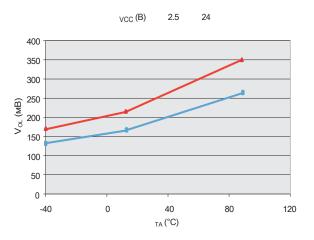
ПРИМЕЧАНИЕ 1. Время включения питания, tPO, определяется как: время, необходимое для установления выходного напряжения в пределах ±10% от его установившегося значения под действием приложенного магнитного поля, после достижения источником питания минимального заданного рабочего напряжения, vcc (мин).

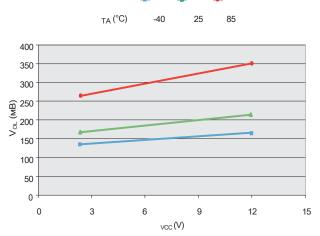
8 Магнитные рабочие характеристики

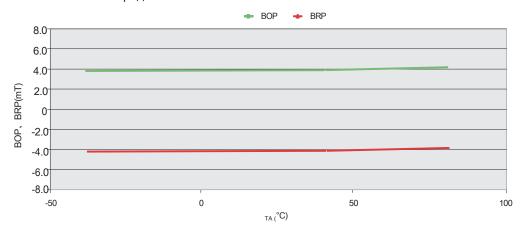
действительны во всем диапазоне рабочих температур; если не указано иное


Характеристика	Симво л	Условия испытаний	Мин.	Тип.	Макс.	Едини ца
Рабочая точка	BOP	Эксплуатация, TJ<165°C	-	4.0	13.0	mT
Место освобождения	BRP	$_{\text{VCC=24}}$ B, RL=10k Ω , B < $_{\text{BRP}}$	3.0	-4.0	-	mT
Гистерезис	ВН	IOUT=25 MA, B > BOP	-	8.0	-	mT

9 Характеристические кривые (тип UA)

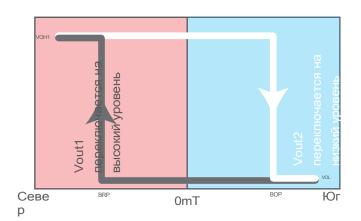

Ток питания (в выключенном состоянии) в зависимости от температуры окружающей среды

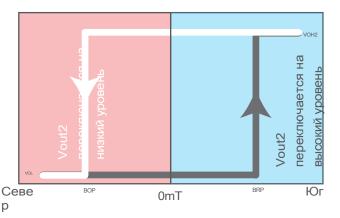

Ток питания (выкл.)



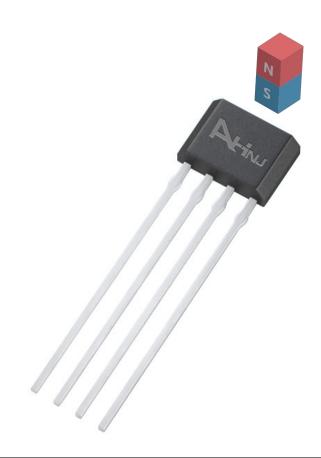
Низкоуровневый выход (включен) в зависимости от температуры окружающей среды Выход низкого уровня (включен) в зависимости от напряжения питания

Рабочая точка и точка высвобождения в зависимости от температуры окружающей среды

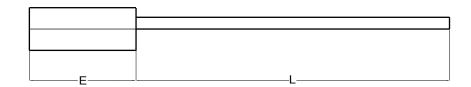


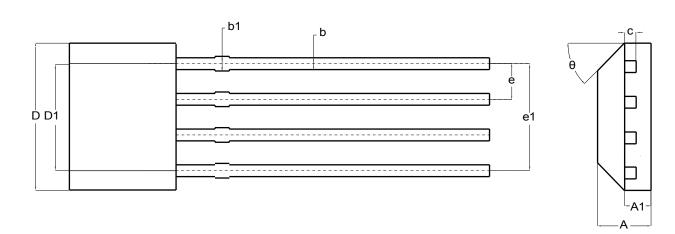


10 Магнитное поведение


Южный полюс Активный

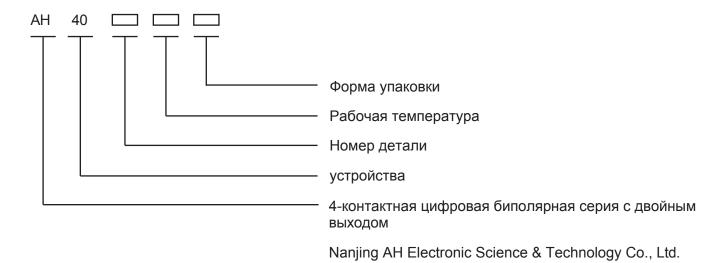
Когда полюс "S" обращен к поверхности метки датчика и замкнут на нее (B ≥ Bop), клемма _{vo1} выдает низкий уровень, а клемма _{vo2} высокий уровень; когда полюс "N" обращен к поверхности метки сенсора и замкнут на нее (B ≤ Brp), клемма _{vo1} выдает высокий уровень, а клемма _{vo2} низкий уровень. Стабильный гистерезис (Bh = Bop - Brp) обеспечивает стабильное состояние переключателя. Характеристики магнитоэлектрического кон- Версия АН4059 показана на рисунке:


Биполярный двойной выход



11 Информация о пакете

TO-94



Символ	Размер (единица измерения: мм)			
CAINIBOJI	Мин	Макс.		
Α	1.400	1.800		
A1	0.700	0.900		
b	0.360	0.500		
b1	0.380	0.550		
С	0.360	0.510		
D	4.980	5.280		
D1	3.780	4.080		
E	3.450	3.750		
е	1.270TYP.			
e1	3.710	3.910		
L	14.900 15.300			
θ	45°TYP.			

12 Информация о маркировке

Copyright 2003~2020 Nanjing AH Electronic Science & Technology Co., Ltd.

Компания Nanjing AH Electronic Science & Technology Co. оставляет за собой право в любое время улучшать характеристики, надежность или технологичность своей продукции в соответствии с подробными спецификациями. Перед размещением заказа пользователь должен убедиться в актуальности информации, на которую он полагается.

Продукция AHNJ не должна использоваться в любых устройствах или системах жизнеобеспечения (включая, но не ограничиваясь перечисленными устройствами или системами), отказ которых может привести к телесным повреждениям.

Информация, включенная в настоящий документ, считается точной и надежной. Однако компания Nanjing AH Electronic Science & Technology Co. не несет ответственности за ее использование, а также за любые нарушения патентов или других прав третьих лиц, которые могут возникнуть в результате ее использования.

Чтобы узнать больше о нашей продукции для вашего применения, пожалуйста, свяжитесь с нами:

nianrong@ahest.com